Identification of Genes Associated with Lemon Floral Transition and Flower Development during Floral Inductive Water Deficits: A Hypothetical Model
نویسندگان
چکیده
Water deficit is a key factor to induce flowering in many woody plants, but reports on the molecular mechanisms of floral induction and flowering by water deficit are scarce. Here, we analyzed the morphology, cytology, and different hormone levels of lemon buds during floral inductive water deficits. Higher levels of ABA were observed, and the initiation of floral bud differentiation was examined by paraffin sections analysis. A total of 1638 differentially expressed genes (DEGs) were identified by RNA sequencing. DEGs were related to flowering, hormone biosynthesis, or metabolism. The expression of some DEGs was associated with floral induction by real-time PCR analysis. However, some DEGs may not have anything to do with flowering induction/flower development; they may be involved in general stress/drought response. Four genes from the phosphatidylethanolamine-binding protein family were further investigated. Ectopic expression of these genes in Arabidopsis changed the flowering time of transgenic plants. Furthermore, the 5' flanking region of these genes was also isolated and sequence analysis revealed the presence of several putative cis-regulatory elements, including basic elements and hormone regulation elements. The spatial and temporal expression patterns of these promoters were investigated under water deficit treatment. Based on these findings, we propose a model for citrus flowering under water deficit conditions, which will enable us to further understand the molecular mechanism of water deficit-regulated flowering in citrus. HIGHLIGHT Based on gene activity during floral inductive water deficits identified by RNA sequencing and genes associated with lemon floral transition, a model for citrus flowering under water deficit conditions is proposed.
منابع مشابه
Changes of edogenous hormone levels during short-day inductive floral initiation and inflorescence differentiation of Chrysanthemum morifolium ‘Jingyun’
Duration of various stages of inflorescence differentiation and hormone levels in apical buds eventually decide the harvest time, flower uniformity and quality of ornamental plants. The progress in inflorescence differentiation process in the chrysanthemum cultivar ‘Jingyun’ can be divided into nine stages. Following short day induction, it took 4d to reach the growing point hypertrophy stage, ...
متن کاملCompetence to Respond to Floral Inductive Signals Requires the Homeobox Genes PENNYWISE and POUND-FOOLISH
The transition from vegetative to reproductive development establishes new growth patterns required for flowering. This switch is controlled by environmental and/or intrinsic developmental cues that converge at the shoot apical meristem (SAM). During this developmental transition, floral inductive signals cause the vegetative meristem to undergo morphological changes that are essential for flow...
متن کاملThe induction and maintenance of flowering in Impatiens.
The mechanisms that establish the floral meristem are now becoming clearer, but the way in which flowering is maintained is less well understood. Impatiens balsamina provides a unique opportunity to address this question because reversion to vegetative growth can be obtained in a predictable way by transferring plants from inductive to non-inductive conditions. Following increasing amounts of i...
متن کاملGenomic Approach to Study Floral Development Genes in Rosa sp.
Cultivated for centuries, the varieties of rose have been selected based on a number of flower traits. Understanding the genetic and molecular basis that contributes to these traits will impact on future improvements for this economically important ornamental plant. In this study, we used scanning electron microscopy and sections of meristems and flowers to establish a precise morphological cal...
متن کاملMorphology and Quantitative Monitoring of Gene Expression Patterns during Floral Induction and Early Flower Development in Dendrocalamus latiflorus
The mechanism of floral transition in bamboo remains unclear. Dendrocalamus latiflorus (Bambusease, Bambusoideae, Poaceae) is an economically and ecologically important clumping bamboo in tropical and subtropical areas. We evaluated morphological characteristics and gene expression profiling to study floral induction and early flower development in D. latiflorus. The detailed morphological stud...
متن کامل